Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Sci Food Agric ; 104(7): 3807-3815, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38270195

RESUMO

Olive oil production yields a substantial volume of by-products, constituting up to 80% of the processed fruits. The olive pomace by-product represents a residue of significant interest due to the diverse bioactive compounds identified in it. However, a thorough characterization and elucidation of the biological activities of olive pomace are imperative to redirect its application for functional food, nutraceutical, and pharmaceutical purposes both for animals and humans. In this review, we examine data from experimental models, including immortalized human vascular endothelial cells, human corneal and conjunctival epithelial cells, human colorectal adenocarcinoma cells, non-tumorigenic human hepatoma cells, and murine macrophages alongside clinical trials. These studies aim to validate the safety, nutritional value, and pharmacological effects of olive pomace. In vitro studies suggest that biophenols extracted from olive pomace possess antioxidant, anti-inflammatory, and antiproliferative properties that could be beneficial in mitigating cardiovascular disorders, particularly atherosclerosis, hepatosteatosis, and dry-eye disease. Protective effects against dry-eye disease were confirmed in a mouse model assay. Olive pomace used in the feed for fish and poultry has demonstrated the ability to enhance animals' immunity and improve nutritional quality of meat and eggs. Human clinical trials are scarce and have revealed minimal biological changes following the consumption of olive pomace-enriched foods. However, alterations in certain biomarkers tentatively suggest cardioprotective properties. The review underscores the value of olive pomace while addressing potential drawbacks and future perspectives, with a specific focus on the need for further investigation into the animal feed and human nutritional properties of olive pomace. © 2024 Society of Chemical Industry.


Assuntos
Oftalmopatias , Olea , Humanos , Animais , Camundongos , Olea/química , Células Endoteliais , Azeite de Oliva/química , Suplementos Nutricionais
2.
Environ Res ; 237(Pt 1): 116869, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37567382

RESUMO

Aflatoxin B1 (AFB1), a dietary toxin from the mold Aspergillus species, is well acknowledged to elicit extra-hepatic toxicity in both animals and humans. The neurotoxicity of AFB1 has become a global public health concern. Contemporary research on how AFB1 enters the brain to elicit neuronal dysregulation leading to noxious neurological outcomes has increased greatly in recent years. The current review discusses several neurotoxic outcomes and susceptible targets of AFB1 toxicity at cellular, molecular and genetic levels. Specifically, neurotoxicity studies involving the use of brain homogenates, neuroblastoma cell line IMR-32, human brain microvascular endothelial cells, microglial cells, and astrocytes, as well as mammalian and non-mammalian models to unravel the mechanisms associated with AFB1 exposure are highlighted. Further, some naturally occurring bioactive compounds with compelling therapeutic effects on AFB1-induced neurotoxicity are reviewed. In conclusion, available data from literature highlight AFB1 as a neurotoxin and its possible pathological contribution to neurological disorders. Further mechanistic studies aimed at discovering and developing effective therapeutics for AFB1 neurotoxicity is warranted.

3.
Foods ; 12(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37297401

RESUMO

Olive pomace oil is obtained when a mixture of olive pomace and residual water is subjected to a second centrifugation. This oil has small amounts of phenolic and volatile compounds compared with extra-virgin olive oil. This study aimed to promote the aromatization of olive pomace oil with rosemary and basil using ultrasound-assisted maceration (UAM) to increase its bioactive potential. For each spice, the ultrasound operating conditions (amplitude, temperature, and extraction time) were optimized through central composite designs. Free fatty acids, peroxide value, volatile compounds, specific extinction coefficients, fatty acids, total phenolic compounds, antioxidant capacity, polar compounds, and oxidative stability were determined. After obtaining the optimal maceration conditions assisted by ultrasound, pomace oils flavored with rosemary and basil were compared to pure olive pomace oil. Quality parameters and fatty acids showed no significant difference after UAM. Rosemary aromatization by UAM resulted in a 19.2-fold increase in total phenolic compounds and a 6-fold increase in antioxidant capacity, in addition to providing the most significant increase in oxidative stability. Given this, aromatization by ultrasound-assisted maceration is an efficient method to increase, in a short time, the bioactive potential of olive pomace oil.

4.
Foods ; 12(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36673335

RESUMO

Fermentation is an important tool in producing functional beverages through agro-industrial wastes, and medicinal and aromatic plants due to the specific content of bioactive molecules. Therefore, this study evaluated the contribution of Matricaria recutita (chamomile), Cymbopogon citratus (lemongrass), or Mentha piperita (peppermint) extracts to the phytochemical profile and potential biological effects of a functional fermented orange beverage in vitro and in silico. The concentrations of aromatic herbal extracts that yielded the best sensory performance for fermented beverages were selected for analyses that involved characterizing the fermented beverages. The beverages that received the extracts (2%) had the highest phenolic and flavonoid content and antioxidant potential compared to the control. Hesperidin (124-130 mg L-1), narirutin (66-70 mg L-1), chlorogenic (11-16 mg L-1), caffeic (5.3-5.5 mg L-1), and ferulic (1-1.7 mg L-1) acids were found in the different formulations. The in silico analysis suggested that the evaluated compounds do not present a toxicity risk (mutagenicity, carcinogenicity, hepatotoxicity, and ability to penetrate the blood-brain barrier). Additionally, they can contribute to the biological effects of therapeutic importance, such as antioxidant, gastroprotective, and anti-ulcerative properties, and the Mentha piperita L. extract presented the greatest potential among the evaluated herbs for use in functional fermented beverages.

5.
Molecules ; 26(15)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34361622

RESUMO

Jaboticaba is a Brazilian native berry described as a rich source of phenolic compounds (PC) with health promoting effects. PC from jaboticaba peel powder (JPP) have low intestinal bio-accessibility and are catabolized by gut microbiota. However, the biological implication of PC-derived metabolites produced during JPP digestion remains unclear. This study aimed to evaluate the antiproliferative effects of colonic fermented JPP (FJPP) in a 3D model of colorectal cancer (CRC) composed by HT29 spheroids. JPP samples fermented with human feces during 0, 2, 8, 24 or 48 h were incubated (10,000 µg mL-1) with spheroids, and cell viability was assessed after 72 h. Chemometric analyses (cluster and principal component analyses) were used to identify the main compounds responsible for the bioactive effect. The antiproliferative effect of FJPP in the CRC 3D model was increased between 8 h and 24 h of incubation, and this effect was associated with HHDP-digalloylglucose isomer and dihydroxyphenyl-γ-valerolactone. At 48 h of fermentation, the antiproliferative effect of FJPP was negligible, indicating that the presence of urolithins did not improve the bioactivity of JPP. These findings provide relevant knowledge on the role of colonic microbiota fermentation to generate active phenolic metabolites from JPP with positive impact on CRC.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Myrtaceae/química , Fenóis/farmacologia , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Células HT29 , Humanos , Extratos Vegetais/farmacologia
6.
Foods ; 10(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207005

RESUMO

Phenolic compounds present in extra virgin olive oil (EVOO) could be retained in its byproducts during processing. Among them, hydroxytyrosol and its derivatives deserve special attention due to their health benefits recognized by The European Food Safety Authority (EFSA). In the present research, the presence of these compounds in the filter cake byproduct was studied by combining pressurized liquid extraction (PLE) and high-performance liquid chromatography coupled to time-of-flight mass spectrometry (HPLC-TOF-MS). The applied optimum extraction parameters were 1500 psi, 120 °C and aqueous ethanol (50:50, v/v). The influence of different drying methods (vacuum-, freeze- and spray-drying) in the recovery of phenolic compounds was also evaluated. A total of 16 compounds from EVOO were identified in the extracts, 3 of them being hydroxytyrosol-related compounds, 6 substances of oleoside and elenolic acid derivatives, together with 6 secoiridoids and 1 lignan. The results highlighted the great number of phenolic compounds recovered from filter cake with these techniques, being even higher than the reported content in EVOO and other byproducts. The combination of PLE and freeze-drying resulted in being the best procedure for the recovery of phenolic compounds from filter cake byproduct.

7.
Food Res Int ; 144: 110297, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34053563

RESUMO

Goji berry fruit is considered a healthy food. However, studies on its effects on aging and safety are rare. This study is the first to evaluate the effects of goji berry juice (GBJ) on oxidative stress, metabolic markers, and lifespan of Caenorhabditis elegans. GBJ caused toxicity, reduced the lifespan of C. elegans by 50%, and increased the reactive oxygen species (ROS) production by 45-50% at all tested concentrations (1-20 mg/µL) of GBJ. Moreover, the highest concentration of GBJ increased lipid peroxidation by 80% and altered the antioxidant enzymes. These effects could be attributed to a pro-oxidant effect induced by GBJ polyphenols and carotenoids. Moreover, GBJ increased lipofuscin, glucose levels, number of apoptotic bodies, and lipase activity. The use of mutant strains demonstrated that these effects observed in the worms treated with GBJ were not associated with the Daf-16/FOXO or SKN-1 pathways. Our findings revealed that GBJ (mainly the highest concentration) exerted toxic effects and promoted premature aging in C. elegans. Therefore, its consumption should be carefully considered until further studies in mammals are conducted.


Assuntos
Senilidade Prematura , Proteínas de Caenorhabditis elegans , Lycium , Animais , Caenorhabditis elegans , Longevidade
8.
Metab Brain Dis ; 36(4): 627-638, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33394288

RESUMO

Microglia are immune cells that are resident in central nervous system. Activation of microglial cells are detrimental to the survival of neurons. Thus, prevention of microglia activation and/or protection against microglia activation could be potential therapeutic strategy towards the management of inflammation-mediated neurodegenerative diseases. Moringa oleifera is widely consumed as food and used in folklore medicine for treating several diseases. This study was convened to investigate the effect of aqueous extract of Moringa oleifera on cell viability, cholinergic and purinergic enzymes in BV-2 microglial cultured cell. Aqueous extract of Moringa oleifera was prepared, lyophilized and reconstituted in 0.5% dimethylsulphoxide (DMSO). Cells were treated with Moringa oleifera extracts (0.1-100 µg/mL) and assessed for cell viability and nitric oxide production. Furthermore, the effect of Moringa oleifera on enzymes of cholinergic (acetylcholinesterase) and purinergic (nucleoside triphosphate diphosphohydrolase; NTPDase, 5' nucleotidase and adenosine deaminase; ADA) systems in BV-2 microglial cells were determined. Incubation of BV-2 microglia cell with M. oleifera extract maintained cell viability, modulated cholinergic and purinergic enzymes activity. The phenolic compounds found in M. oleifera extracts, include chlorogenic acid, rutin; quercetin pentoside, kaempferol derivative and quercetin derivative. Thus, this study suggest that the potential therapeutic effect of the phenolic compounds found in M. oleifera may have been responsible for the maintenance of cell viability in BV-2 microglia cells and modulation of cholinergic as well as purinergic enzymes activity.


Assuntos
Microglia/efeitos dos fármacos , Microglia/enzimologia , Moringa oleifera , Extratos Vegetais/farmacologia , 5'-Nucleotidase/metabolismo , Acetilcolinesterase/metabolismo , Adenosina Desaminase/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Camundongos , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Pirofosfatases/metabolismo
9.
Drug Chem Toxicol ; 44(4): 400-408, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30938198

RESUMO

Arsenic (As) causes health effects, especially cancer. Rice (Oryza sativa L.) can contain high As concentrations. Using ICP-MS, we quantified the total As (tAs) levels in the main brands of rice (n = 103) and infant cereals (n = 27) consumed by Brazilians. The levels were compared to the maximum limits prescribed by regulatory agencies. We estimated the daily intake (EDI) of As by Brazilians by combining the mean As concentration determined in the white rice samples with per capita daily consumption divided by the average body weight as reported by the Brazilian Institute of Geography and Statistics in 2010. The possible health risk for consumers was assessed by calculating the margin of exposure (MOE) as prescribed by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Moreover, tAs was determined in 11 pesticides used by Brazilian farmers. The tAs levels in the rice ranged from 0.003 to 1.3 mg kg-1. Approximately 27% of the white rice contained tAs levels above the limit set by Mercosul (0.3 mg kg-1) and 45% were above the limit set by the European Commission (0.2 mg kg-1). In the infant cereals, tAs levels ranged from 0.003 to 0.243 mg kg-1. In the pesticides, tAs levels ranged from 0.005 to 0.315 mg L-1. The EDI showed that, on average, Brazilians consume 4.13 µg As kg-1 BW weekly. In addition, a low MOE was observed, demonstrating that high use of rice presents a risk of high inorganic (iAs) exposure, which represents a public health concern.


Assuntos
Arsenicais/análise , Contaminação de Alimentos/análise , Alimentos Infantis/análise , Oryza/química , Adolescente , Adulto , Idoso , Brasil , Grão Comestível/química , Exposição Ambiental/análise , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Praguicidas/química , Medição de Risco , Adulto Jovem
10.
Toxicol Lett ; 339: 23-31, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33359558

RESUMO

Interesterified fat (IF) currently substitutes the hydrogenated vegetable fat (HVF) in processed foods. However, the IF consumption impact on the central nervous system (CNS) has been poorly studied. The current study investigated connections between IF chronic consumption and locomotor impairments in early life period and adulthood of rats and access brain molecular targets related to behavior changes in adulthood offspring. During pregnancy and lactation, female rats received soybean oil (SO) or IF and their male pups received the same maternal supplementation from weaning until adulthood. Pups' motor ability and locomotor activity in adulthood were evaluated. In the adult offspring striatum, dopaminergic targets, glial cell line-derived neurotrophic factor (GDFN) and lipid profile were quantified. Pups from IF supplementation group presented impaired learning concerning complex motor skill and sensorimotor behavior. The same animals showed decreased locomotion in adulthood. Moreover, IF group showed decreased immunoreactivity of all dopaminergic targets evaluated and GDNF, along with important changes in FA composition in striatum. This study shows that the brain modifications induce by IF consumption resulted in impaired motor control in pups and decreased locomotion in adult animals. Other studies about health damages induced by IF consumption may have a contribution from our current outcomes.


Assuntos
Encéfalo/metabolismo , Gorduras na Dieta/efeitos adversos , Locomoção/fisiologia , Atividade Motora/fisiologia , Sistema Nervoso/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ácidos Graxos trans/efeitos adversos , Fatores Etários , Fenômenos Fisiológicos da Nutrição Animal , Animais , Gorduras na Dieta/metabolismo , Feminino , Humanos , Fenômenos Fisiológicos da Nutrição Materna , Modelos Animais , Fenômenos Fisiológicos do Sistema Nervoso , Gravidez , Ratos , Ácidos Graxos trans/metabolismo
11.
Food Chem ; 344: 128689, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33277120

RESUMO

The effect of micronization of granulometrically fractionated olive pomace (OP) on the bioaccessibility of polyphenols and the antioxidant capacity was investigated during sequential in vitro static digestion. Crude OP was fractionated in a 2-mm sieve (F1: > 2 mm; F2: < 2 mm) and then micronized (300 r min-1, 5 h) generating F1AG (17.8 µm) and F2AG (15.6 µm). Micronization increased the release of hydroxytyrosol, oleuropein, caffeic acid, and decarboxymethyl oleuropein aglycone (3,4-DHPEA-EDA) in the salivary and gastric phase, beyond luteolin in the gastric phase. Micronization also increased the intestinal bioaccessibility of hydroxytyrosol, 3,4-DHPEA-EDA, oleuropein, luteolin, and apigenin; it was more effective for F2AG than F1AG. Micronized samples increased antioxidant capacity in the gastric phase. F2AG exhibited the highest antioxidant capacity in the insoluble intestinal fraction. Thus, micronization can be further exploited to improve the nutraceutical properties of OP by increasing the bioaccessibility and antioxidant capacity of phenolic compounds.


Assuntos
Manipulação de Alimentos/métodos , Olea/química , Polifenóis/análise , Antioxidantes/química , Ácidos Cafeicos/análise , Cromatografia Líquida de Alta Pressão , Suplementos Nutricionais/análise , Digestão , Glucosídeos Iridoides , Iridoides/análise , Olea/metabolismo , Azeite de Oliva/química , Extratos Vegetais/química , Análise de Componente Principal , Espectrometria de Massas em Tandem
12.
Food Res Int ; 138(Pt A): 109718, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33292963

RESUMO

Blueberry is a polyphenol-rich fruit bearing great bioactive potential. Natural deep eutectic solvents (NADES) emerged as putatively biocompatible solvents that could substitute for toxic organic solvents in the extraction of fruit phenolic compounds for developing nutraceuticals or functional foods. Therefore, the aim of this study was to investigate the gastroprotective effects and the biocompatibility of a blueberry crude extract (CE) obtained using NADES and of the extract fractions (anthocyanin-rich fraction - ARF; non-anthocyanin phenolic fraction - NAPF) in a model of ethanol-induced gastric ulcer in rats. CE was the NADES-containing, ready-to-use extract that was obtained using choline chloride:glycerol:citric acid NADES (0.5:2:0.5 M ratio). ARF and NAPF were the NADES-free fractions obtained by solid phase purification of CE and were investigated to identify the bioactive fraction responsible for the effects of CE. Animals were treated for 14 days with water, NADES vehicle, CE, ARF, NAPF or lansoprazole (intragastric) and then received ethanol to induce gastric ulcer. CE decreased ulcer index and preserved the integrity of gastric mucosa. The pretreatment with CE or ARF reduced glutathione depletion and the inflammatory response. All treatments, including NADES vehicle reduced protein oxidation and nitric oxide overproduction in ethanol-treated rats. Additionally, ARF increased short-chain fatty acids in feces. These findings suggest that NADES can be used to obtain biocompatible extracts of blueberry that exhibit gastroprotective effects with no need of solvent removal. The gastroprotective effects were mainly associated to ARF but NAPF and even NADES vehicle also contributed to some protective effects.


Assuntos
Mirtilos Azuis (Planta) , Úlcera Gástrica , Animais , Etanol , Extratos Vegetais/farmacologia , Ratos , Solventes , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/prevenção & controle
13.
Food Res Int ; 137: 109615, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233205

RESUMO

Eugenia involucrata DC. (Myrtaceae) is a native tree species from Brazil that has been scarcely studied. We investigated the phenolic composition, the antioxidant capacity and the antitumoral activity of ethanolic extracts from fruits (FE) and seeds (SE) of E. involucrata. Six anthocyanins were identified by UPLC-PDA/MS/MS in FE, being four derived from cyanidin, and the other ones derived from delphinidin and pelargonidin. Using HPLC-PDA, FE presented a larger number of phenolic compounds (epicatechin, catechin, rutin, ellagic acid, myricetin and quercetin) than SE, which did not show myricetin and quercetin. However, SE showed higher total phenolic content and generally stronger in vitro antioxidant capacity than FE, except that only FE exhibited superoxide radical scavenging activity, which may be attributed to the anthocyanins present in fruits. Additionally, only SE exhibited antitumoral activity in a pancreatic cancer cell line (PANC-1). The antitumoral mechanisms involved imbalance of antioxidant status, alteration of mitochondrial membrane potential, cytoskeleton disassembly and induction of cell death by apoptosis and necrosis. Compared to the standard antitumoral drug gemcitabine, SE exhibited higher antitumoral efficacy and selectivity index. The highest concentration of total phenolics and of specific phenolic compounds bearing antitumoral properties may be related to the antitumoral activity of SE. Our results corroborate previous data of E. involucrata as an important source of bioactive compounds and provide, for the first time, evidences of in vitro antitumoral potential of its seeds on pancreatic cancer cell line.


Assuntos
Antioxidantes , Eugenia , Antioxidantes/farmacologia , Brasil , Frutas , Extratos Vegetais/farmacologia , Sementes , Espectrometria de Massas em Tandem
14.
Antioxidants (Basel) ; 9(8)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752213

RESUMO

Extra-virgin olive oil is regarded as functional food since epidemiological studies and multidisciplinary research have reported convincing evidence that its intake affects beneficially one or more target functions in the body, improves health, and reduces the risk of disease. Its health properties have been related to the major and minor fractions of extra-virgin olive oil. Among olive oil chemical composition, the phenolic fraction has received considerable attention due to its bioactivity in different chronic diseases. The bioactivity of the phenolic compounds could be related to different properties such as antioxidant and anti-inflammatory, although the molecular mechanism of these compounds in relation to many diseases could have different cellular targets. The aim of this review is focused on the extra-virgin olive oil phenolic fraction with particular emphasis on (a) biosynthesis, chemical structure, and influence factors on the final extra-virgin olive oil phenolic composition; (b) structure-antioxidant activity relationships and other molecular mechanisms in relation to many diseases; (c) bioavailability and controlled delivery strategies; (d) alternative sources of olive biophenols. To achieve this goal, a comprehensive review was developed, with particular emphasis on in vitro and in vivo assays as well as clinical trials. This report provides an overview of extra-virgin olive oil phenolic compounds as a tool for functional food, nutraceutical, and pharmaceutical applications.

15.
Artigo em Inglês | MEDLINE | ID: mdl-32805194

RESUMO

Ochratoxin A (OTA) is a mycotoxin found in grape products and oxidative stress has been reported as an important mechanism involved in its toxicity, classified as possible carcinogenic to humans. Conversely, phenolics are known bioactive compounds in grapes and display great antioxidant properties. However, the biological effects of the concomitant presence of phenolic compounds and OTA remains unclear. The aim of this study was to evaluate, for the first time, the effect of OTA presence in Cabernet Sauvignon wine on antioxidant activity in vitro and on oxidative stress markers in vivo. In addition, the phenolic composition of wine was evaluated by LC-DAD-MS/MS. In vitro assays were based on spectrophotometric methods, while in vivo assays were performed evaluating oxidative stress markers in the nematode Caenorhabditis elegans, an alternative model to animal testing. A total of 23 phenolic compounds were identified in the Cabernet sauvignon red wine, including the anthocyanins delphinidin-3-O-glicoside and malvidin-3-O-glicoside, the flavonol quercetin-3-O-glucuronide and the phenolic acids caffeic, verbascoside and caftaric. Trans-resveratrol and trans-piceid were the only stilbenes found in the samples. OTA presence in the red wine was accompanied by reduction in GSH content and increase in hydroxyl radical generation in vitro. The presence of OTA in wine also increased lipoperoxidation and induced overexpression of the antioxidant enzymes superoxide dismutase and catalase in vivo. This study demonstrates that OTA presence in red wine can reduce its antioxidant potential in vitro and induces oxidative stress in vivo, without affecting the phenolic compounds levels in the samples. Thus, this work provides insights into the negative effects of the presence of OTA in wine, not only by its known toxicity, but also by prejudicing the antioxidant potential of wine. It is important to be aware of these effects when developing a complete description of OTA toxicity in humans.


Assuntos
Antioxidantes/farmacologia , Ocratoxinas/farmacologia , Vitis/química , Vinho/análise , Antioxidantes/análise , Catalase/genética , Catalase/metabolismo , Cromatografia Líquida , Ocratoxinas/análise , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Espectrometria de Massas em Tandem
16.
Food Res Int ; 135: 109305, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32527490

RESUMO

Aromatization of extra-virgin olive oil (EVOO) with aromatic plants is commonly used to enrich the oil with aromatic and antioxidant compounds. Ultrasound can be an alternative to accelerate this process. The objective of this work was to determine if ultrasound is able to accelerate EVOO aromatization with rosemary and basil and how it affects the migration of volatile and other compounds, the oxidative stability and the antioxidant capacity of the aromatized products. Ultrasound parameters (amplitude, time, and temperature of extraction) were optimized for each herb with central composite designs. Free fatty acid, peroxide value, K232, K270, ΔK, fatty acid profile, total phenolics, antioxidant capacity, polar compounds, oxidative stability and volatile compounds profile were evaluated in all samples. Physical effects of ultrasound on the herbs were observed by scanning electron microscopy. In the optimization, variables related to the oxidative processes were minimized and compounds migration and oxidative stability were maximized. Results were 70.09% amplitude, 36.6 min and 35 °C for rosemary and 95.98% amplitude, 9.9 min and 30 °C for basil. These conditions were compared to 7 and 15 days of conventional maceration (CM). Aromatization of EVOO with rosemary, both by ultrasound assisted maceration (UAM) or CM, improved total phenolics, terpenes, esters, ketones, stability and induction times, as well as decreased the values for the quality parameters. The use of UAM accelerated the process to 37 min. However, aromatization with basil by CM increased the values for the quality parameters and reduced the total phenolics, the antioxidant capacity and the induction and stability times. UAM with basil reached better results than those observed for CM, in only 10 min. In conclusion, rosemary is more appropriate than basil for EVOO aromatization, and UAM was the best choice to accelerate the processes when compared to CM.


Assuntos
Ocimum basilicum , Rosmarinus , Azeite de Oliva , Oxirredução , Óleos de Plantas
17.
Nutr Res ; 76: 71-81, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32217378

RESUMO

Erythrocytes exhibit high susceptibility to hemolysis in several pathologies due to the oxidation of cellular components. We hypothesized that annatto carotenoids improve the redox status of erythrocyte plasma membranes and promote a consequent increase in human erythrocyte resistance to hemolysis. The objective of this study was to evaluate whether food-grade annatto carotenoids can increase human erythrocyte resistance to hemolysis in vitro and ex vivo. For the in vitro experiment, erythrocytes from healthy volunteers were isolated and coincubated with bixin (BIX) or norbixin (NBIX) and 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH), glucose, or sodium nitrite (NaNO2) as hemolysis inducers. In the ex vivo study, healthy volunteers consumed a capsule containing BIX or NBIX (0.05 mg/kg body weight per day) or placebo for 7 days before blood sample collection. Their erythrocytes were isolated and incubated with AAPH, glucose, or NaNO2. In both the ex vivo and in vitro studies, erythrocytes were subjected to osmotic fragility tests. The activity of antioxidant enzymes, and reduced glutathione and lipid peroxidation levels in erythrocytes were also evaluated ex vivo. In vitro BIX and NBIX not only reduced erythrocyte membrane fragility induced by AAPH, glucose, or NaNO2 but also improved basal osmotic resistance in the micromole-per-liter range (P < .05). BIX and NBIX supplementation increased erythrocyte membrane resistance (P < .05), with BIX being more effective. Also, BIX and NBIX protected erythrocytes from lipid peroxidation and improved the cellular redox environment (P < .05). These results support the hypothesis that annatto carotenoids supplementation exerts antihemolytic properties by preventing the oxidative damage of human erythrocytes.


Assuntos
Antioxidantes/farmacologia , Carotenoides/farmacologia , Suplementos Nutricionais , Eritrócitos/efeitos dos fármacos , Corantes de Alimentos/farmacologia , Hemólise/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Adolescente , Adulto , Amidinas , Antioxidantes/metabolismo , Bixaceae/química , Glucose , Glutationa/metabolismo , Voluntários Saudáveis , Humanos , Peroxidação de Lipídeos , Oxirredução , Nitrito de Sódio , Adulto Jovem
18.
Nutr Res ; 76: 52-70, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32155506

RESUMO

Most phenolic compounds and dietary fiber reach intact to the colon. We hypothesized that grape peel powder (GPP), a rich source of these bioactive compounds, modulates inflammatory and oxidative pathways collaborating to attenuate colonic damage in experimental colitis. To determine which bioactive fraction would be responsible for this effect, the aim of this study was to evaluate the effect of dietary supplementation with whole GPP or the isolated bioactive-rich fractions from GPP (extractable polyphenols [EP], dietary fiber and fiber-bound polyphenols [NEP-F], and dietary fiber) in rats with experimental colitis. Colitis was induced by intrarectal injection of 2,4,6-trinitrobenzene sulfonic acid (TNBS) after 15 days of dietary supplementation. EP diet did not reverse the decrease in feed intake and indeed worsened colon shortening and increased spleen weight; however, these effects were not observed for the GPP group, which had polyphenols associated to the matrix besides the extractable ones. Colitis impaired the activity of colonic antioxidant enzymes and increased lipid peroxidation, protein oxidation, nitric oxide (NO) levels, and proinflammatory cytokines in serum and in the colon tissue. GPP restored the activity of antioxidant enzymes and decreased colon oxidation and NO levels. All grape peel fractions reduced the protein expression of the inhibitor of kappa kinase beta and NO levels in colon tissue, but only NEP-F reduced the expression of phosphorylated nuclear factor kappa B and myeloperoxidase activity. Results demonstrated that GPP attenuates inflammatory and oxidative response in TNBS-induced colitis by downregulating the nuclear factor kappa B pathway and upregulating antioxidant enzymes, with NEP-F being the fraction most likely associated to these protective effects.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Colite/tratamento farmacológico , Colo/efeitos dos fármacos , NF-kappa B/metabolismo , Polifenóis/uso terapêutico , Vitis/química , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Colite/complicações , Colite/metabolismo , Colite/patologia , Colo/metabolismo , Colo/patologia , Citocinas/metabolismo , Fibras na Dieta , Frutas , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Peroxidação de Lipídeos , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Polifenóis/farmacologia , Ratos Wistar , Transdução de Sinais , Superóxido Dismutase/metabolismo , Ácido Trinitrobenzenossulfônico
19.
Inflammopharmacology ; 28(3): 773-786, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31802387

RESUMO

The treatment of cutaneous inflammation with topical corticosteroids may cause adverse effects reinforcing the need for therapeutic alternatives to treat inflammatory skin disorders. We investigated the anti-inflammatory effect of oleic acid (OA), a fatty acid of the omega-9 (ω-9) family, and we point out it as an alternative to treat inflammatory skin disorders. OA was incorporated into Lanette®- or Pemulen® TR2-based semisolid preparations and the pH, spreadability, rheological behavior and in vivo anti-inflammatory performance in a UVB radiation-induced skin inflammation model in mice were assessed. The anti-inflammatory activity was verified after single or repeated treatment of the mouse ear following the UVB. The OA action on glucocorticoid receptors was investigated. Both semisolids presented pH values compatible with the deeper skin layers, appropriate spreadability factors, and non-Newtonian pseudoplastic rheological behavior. Pemulen® 3% OA inhibited ear edema with superior efficacy than Lanette® 3% OA and dexamethasone after a single treatment. Pemulen® 3% OA and dexamethasone also reduced inflammatory cell infiltration. After repeated treatments, all formulations decreased the ear edema at 24 h, 48 h and 72 h after UVB. OA in semisolids, especially Pemulen® TR2-based ones, presented suitable characteristics for cutaneous administration and its anti-inflammatory activity seems to occur via glucocorticoid receptors. OA was also capable to reduce croton oil-induced skin inflammation. Besides, the ex vivo skin permeation study indicated that OA reaches the receptor medium, which correlates with a systemic absorption in vivo. The natural compound OA could represent a promising alternative to those available to treat inflammatory skin disorders.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Ácido Oleico/farmacologia , Receptores de Glucocorticoides/metabolismo , Pele/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos , Administração Cutânea , Animais , Dermatite/tratamento farmacológico , Dermatite/metabolismo , Edema/tratamento farmacológico , Edema/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Pele/metabolismo
20.
Ciênc. rural (Online) ; 50(3): e20190341, 2020. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1089558

RESUMO

ABSTRACT: This study aimed to extract isoflavones from soybean molasses with different solvents, furthermore, the selected extract, which showed overall desirable characteristics was selected to evaluate the potentials of different encapsulating agents. The encapsulating agents employed for the study included 18% Maltodextrin DE20 (T1), 18% Hi-maize (T2), and a mixture of equal proportions of 9% Maltodextrin DE20 and 9% of Hi-maize (T3). Solvents such as 80% ethanol and methanol, and grain alcohol in varying different concentrations of 50 and 80% were used for the studies. The best solvent for the extraction of phenolics and total isoflavones was 50% cereal alcohol, this extract also presented higher antioxidant activity. Evaluation of the encapsulating agents revealed that 18% Hi-maize with inlet air of 130 °C was best suited for the encapsulation of isoflavones. The ORAC method showed that microcapsules with the 18% Hi-maize encapsulating agent also had higher antioxidant activity.


RESUMO: Este estudo teve como objetivo extrair isoflavonas do melaço de soja com diferentes solventes, além disso, o extrato selecionado com as características desejáveis ​​em geral foi selecionado para avaliar os potenciais de diferentes agentes encapsulantes. Os agentes encapsulantes foram: 18% de maltodextrina DE20 (T1), 18% Hi-maize (T2) e uma mistura em proporções iguais de 9 % de maltodextrina DE20 e 9% de Hi-maize (T3). Foram testados os solventes, etanol e metanol a 80% e álcool de cereais a 50 e 80%. O melhor solvente para a extração de fenólicos e isoflavonas totais foi o álcool de cereais a 50%, sendo que este extrato também apresentou maior atividade antioxidante. Entre os agentes encapsulantes testados, 18% Hi-maize com ar de entrada de 130 °C mostrou ser o melhor para encapsular as isoflavonas. O método ORAC mostrou que as microcápsulas com o agente encapsulante Hi-maize a 18% também apresentaram maior atividade antioxidante.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA